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Appendix 1: supplementary methods and results to “Estimating global, 
regional, and national daily and cumulative infections with SARS-
CoV-2 through Nov 14, 2021: a statistical analysis” 

This appendix provides further methodological details and supplementary results for “Estimating global, regional, 
and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis”. 
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Section 1: List of abbreviations 
Abbreviation Full phrase  
B.1.1.7 SARS-CoV-2 alpha variant 
B.1.351 SARS-CoV-2 beta variant 
B.1.617 SARS-CoV-2 delta variant 
B.1.1.529 SARS-CoV-2 omicron variant 
COVID-19 coronavirus disease 2019 
CDC Centers for Disease Control and Prevention  
GATHER Guidelines for Accurate and Transparent Health Estimates Reporting 
GBD Global Burden of Diseases, Injuries, and Risk Factors Study 
IDR infection–detection ratio 
IFR infection–fatality ratio 
IHR infection–hospitalisation ratio 
MRTool Meta-Regression Tool 
P.1 SARS-CoV-2 Gamma variant 
RT-PCR reverse transcription-polymerase chain reaction 
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 
UI uncertainty interval 
WHO World Health Organization 

Section 2: GATHER compliance 
This study complies with GATHER recommendations.1 We have documented the steps in our analytical procedures 
and detailed the data sources used. See table S1 for the GATHER checklist. The GATHER recommendations can be 
found on the GATHER website. 

Table S1. GATHER checklist 
Item # Checklist item Reported on page # 
Objectives and funding 
1 Define the indicator(s), populations (including age, sex, and geographic entities), 

and time period(s) for which estimates were made. 
Main text: “overview” section in the 
methods 
Appendix 1: section 3

2 List the funding sources for the work. Main text: “funding” section of the 
summary, “role of the funding source” 
section of the methods, and 
“acknowledgments” section (to be 
added after resubmission) 

Data Inputs 
   For all data inputs from multiple sources that are synthesized as part of the study:  
3 Describe how the data were identified and how the data were accessed.  Main text: “data inputs and 

corrections” section in the methods 
Appendix 1: section 4

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.  Main text: “data inputs and 
corrections” section in the methods 
Appendix 1: section 4

5 Provide information on all included data sources and their main characteristics. For each data 
source used, report reference information or contact name/institution, population 
represented, data collection method, year(s) of data collection, sex and age range, diagnostic 
criteria or measurement method, and sample size, as relevant.  

Appendix 2; 
http://ghdx.healthdata.org/record/ihme-
data/covid_19_cumulative_infections 

6 Identify and describe any categories of input data that have potentially important biases (e.g., 
based on characteristics listed in item 5). 

Main text: limitations section in the 
discussion 

   For data inputs that contribute to the analysis but were not synthesized as part of the study:  

7 Describe and give sources for any other data inputs.  N/A 
   For all data inputs: 
8 Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a 

spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data 
inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, 
provide a contact name or the name of the institution that retains the right to the data. 

Data inputs available at: 
http://ghdx.healthdata.org/record/ihme-
data/covid_19_cumulative_infections; 
Institution names for all data inputs by 
location given in appendix 2.  

Data analysis  
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9 Provide a conceptual overview of the data analysis method. A diagram may be helpful.  Main text: “overview” section of the 
methods 

10 Provide a detailed description of all steps of the analysis, including mathematical formulae. 
This description should cover, as relevant, data cleaning, data pre-processing, data adjustments 
and weighting of data sources, and mathematical or statistical model(s).  

Main text: short description of all steps 
of the analysis given in the 
methods section 
Appendix 1: detailed description of all 
steps of the analysis + mathematical 
formulae given in sections 5–9 

11 Describe how candidate models were evaluated and how the final model(s) were selected.  Main text: consideration of different 
covariates in the methods section 

12 Provide the results of an evaluation of model performance, if done, as well as the results of any 
relevant sensitivity analysis. 

Appendix 1: sections 9, 10 

13 Describe methods for calculating uncertainty of the estimates. State which sources of 
uncertainty were, and were not, accounted for in the uncertainty analysis. 

Main text: “ensemble framework” and 
“robust estimate of daily infections” 
sections of the methods 
Appendix 1: sections 7, 9 

14 State how analytic or statistical source code used to generate estimates can be accessed. All code used in the analysis can be 
found online 
(https://github.com/ihmeuw/covid-
historical-model; 
https://github.com/ihmeuw/covid-
model-infections). 

Results and Discussion  
15 Provide published estimates in a file format from which data can be efficiently extracted.  Published estimates in excel format 

available at 
http://ghdx.healthdata.org/record/ihme-
data/covid_19_cumulative_infections 

16 Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals). Uncertainty intervals are reported 
alongside all estimates in the abstract 
and main results sections in the main 
text and all results in appendix 1 

17 Interpret results in light of existing evidence. If updating a previous set of estimates, describe 
the reasons for changes in estimates. 

Main text: "interpretation" section of 
the summary and discussion section 

18 Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data 
limitations that affect interpretation of the estimates. 

Main text: limitations section in the 
discussion 

Section 3: Locations, populations, and time period of analysis 
Daily infections, cumulative infections, proportion of the population infected one or more times, and Reffective were 
modelled for 190 countries and territories, including subnational analyses for 10 countries and territories, aggregated 
into 21 regions, seven super-regions,2 and globally. All estimates are for all ages and both males and females 
combined. The time period of analysis was from the start of the coronavirus disease 2019 (COVID-19) pandemic 
through November 14, 2021. 

Section 4: Data inputs 
Section 4.1: Reported cases data 
Data on reported cases primarily came from Johns Hopkins University,3 supplemented by location-specific datasets 
extracted either directly from ministries of health, departments of public health, or other third parties. Sources are 
outlined in appendix 2 (section 4, table S4). Cases were defined, depending on the local context, as either an 
individual who has received a positive test result, whether RT-PCR, antigen, or antibody (regardless of symptoms 
status) or an individual who has symptoms consistent with a clinical definition of COVID-19. Adjustments to the 
time series were periodically required, either to account for interruptions in daily reporting due to, for instance, 
major public holidays, or more systematic issues, such as reporting backlogs of cases accumulated in laboratory 
processing, or adjustments due to changes in case definitions. A catalogue of these corrections is available through 
the associated GHDx record (http://ghdx.healthdata.org/record/ihme-data/covid_19_cumulative_infections). 

Section 4.2: Hospital admissions data 
Data on reported daily admissions, or cumulative hospitalisations, was typically sourced from ministries of health, 
or multi-jurisdiction agencies such as the US Department of Health and Human Services (HHS), or the European 
Centres for Disease Control. Sources are outlined in appendix 2 (section 1, table S1). Adjustments to the time series 
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were periodically required, either to account for interruptions in daily reporting due to, for instance, major public 
holidays, or more systematic issues, such as changes in COVID case definitions. A catalogue of these corrections is 
available through the associated GHDx record. 

For time series that were incomplete for the entirety of the pandemic, such as the US HHS admissions dataset, we 
imputed the missing time-series portions by first running separate linear regressions for each location with 
missingness. The dependent variable was admissions, and the independent variable was infections derived from both 
daily deaths divided by the infection–fatality ratio (IFR)4 and from cases divided by the infection–detection ratio 
(IDR) for the period in time that overlapped with the admissions data. We then used the coefficient from this model, 
a naïve infection–hospitalisation ratio (IHR) estimate, to predict out of sample for the period that was missing 
admissions, using the average of the two separately derived infections estimates. To avoid any disjoints at the day of 
transition from imputed data to the observed, we gradually transitioned from the former to the latter over the tail 
period of the imputation. We did this by determining the ratio of the average observed admissions over first week of 
data to the predicted admissions for that week, linearly interpolated from a ratio of 1 at 60 days before observed to 
the calculated residual ratio at the first day of observed, and multiplied the imputation model predictions by that 
ratio during that period. We then included the imputed admissions along with the observed in our hospitalisations 
database. 

Section 4.3: Reported deaths data 
Data on reported daily deaths primarily came from Johns Hopkins University,3 supplemented by location-specific 
datasets extracted either directly from ministries of health, departments of public health, or other third parties. 
Sources are outlined in appendix 2 (section 2, table S2). Adjustments to the time series were periodically required, 
either to account for interruptions in daily reporting due to, for instance, major public holidays, or more systematic 
issues, such as reporting backlogs of deaths accumulated in vital registration system processing, or adjustments due 
to changes in case definitions and reconciliation of death certificates. A catalog of these corrections is available 
through the associated GHDx record. 

Section 4.4: Seroprevalence data 
Data on serosurveys reporting antibody positivity were collated on an ongoing basis. Two key data types were 
tracked—ongoing serological surveys conducted by governmental organisations and released periodically, and 
publications of antibody surveys published in preprint servers and traditional journals. For the latter, we leveraged 
existing published reviews5,6 and cross-referenced the Serotracker database.7 Sources used in this study and used as 
location-representative studies are outlined in appendix 2 (section 3, table S3). Data that were deemed not to be 
representative of the general population in the most-detailed geographical location in our modelling hierarchy 
covering the study site were excluded. Additionally, we excluded studies that reported less than 0.03 seroprevalence, 
as we found that measurements taken with little signal in the population resulted in empirical estimates of IFR not 
generalisable across locations, or even within location after broader exposure of the population. 

Section 5: Seroprevalence survey adjustments 
Section 5.1: Adjusting for vaccinations 
Methods for estimating vaccination rates are described by the COVID-19 Forecasting Team.8 Seroprevalence 
studies that use anti-spike tests have been shown to identify the vast majority of individuals tested who have 
received a vaccine.9 In order to prevent this from influencing our estimates of cumulative infections, we had to 
determine the proportion of the sample that is likely to have been vaccinated but not infected. The formula for this 
adjustment is: 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 −
1 − 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜

1 − 𝑣𝑣 × 0.9
 

where true seroprevalence, 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is based on observed seroprevalence, 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 assuming 90% of vaccinated 
individuals, 𝑣𝑣 would test positive.9 This is applied only to data based on anti-spike assays, unless those data indicate 
they have excluded vaccinated people from their survey population. 
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Section 5.2: Adjusting for reinfection from escape variants 
Methods for estimating variant prevalence are described by the COVID-19 Forecasting Team.8 In settings with 
escape variants present, seroprevalence surveys provide an estimate of the cumulative number of individuals with 
one or more infections. To compute the IFR, IHR, and IDR, we needed an estimate of cumulative infections, 
including reinfections. We estimated the number of cumulative infections from seroprevalence surveys, based on the 
prevalence of escape variants (Beta, Gamma, and Delta) and a level of cross-variant immunity between the escape 
variants and ancestral variants or other variants that do not show immune escape, such as Alpha (more details can be 
found in section 9.5). For this stage of our analysis, we approximated the time pattern of past infection using deaths 
divided by a preliminary estimate of the IFR described subsequently—we later used the seroprevalence with all 
corrections applied to re-estimate the IFR. The formula for the correction for escape variant prevalence is: 

𝐼𝐼𝑡𝑡𝑎𝑎 =
∑ 𝑖𝑖𝑑𝑑𝑜𝑜(1 − 𝑝𝑝𝑑𝑑𝑒𝑒)𝑡𝑡
𝑑𝑑=1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝑈𝑈𝑡𝑡 = 𝐼𝐼𝑡𝑡𝑎𝑎(1 − 𝑐𝑐) 

𝐼𝐼𝑡𝑡
𝑎𝑎,𝑒𝑒 =

∑ 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑜𝑜𝑝𝑝𝑑𝑑𝑒𝑒𝑡𝑡
𝑑𝑑=1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝑆𝑆𝑡𝑡 =  
𝐼𝐼𝑡𝑡𝑜𝑜

𝐼𝐼𝑡𝑡𝑜𝑜 − 𝐼𝐼𝑡𝑡
𝑎𝑎,𝑒𝑒 

where cumulative ancestral-type infections at time t, 𝐼𝐼𝑡𝑡𝑎𝑎, is a function of daily observed infections, 𝑖𝑖𝑑𝑑𝑜𝑜, and daily 
escape variant prevalence, 𝑝𝑝𝑑𝑑𝑒𝑒; unprotected population fraction at time t, 𝑈𝑈𝑡𝑡, is the percentage of individuals exposed 
to ancestral-strain COVID not protected by cross-variant immunity, c; and ancestral-type infections re-infected with 
escape-variant COVID at time t, 𝐼𝐼𝑡𝑡

𝑎𝑎,𝑒𝑒, is then the product of unprotected exposed, observed infections, and escape 
variant prevalence. The adjustment scalar at time t, 𝑆𝑆𝑡𝑡, was then applied to seroprevalence data to account for repeat 
infections. 

Section 5.3: Adjusting for seroreversion 
Published studies10–13 following cohorts of patients with positive viral tests show declining antibody test sensitivity 
as a function of time since infection. They have shown that different commercial tests have different rates of 
declining sensitivity, which may be related to the isotype or antigen target. To correct each reported seroprevalence 
survey for underreporting due to sensitivity, we used information on the specific test used in each survey, the pattern 
of declining sensitivity over time, and information on the time pattern of infections. For studies that use assays for 
which we do not have data on sensitivity decay, we used the average sensitivity curve among the assays we did have 
after matching on antigen target and isotype. 

As with the correction for multiple infections, we used an initial approximation of infections in the form of deaths 
divided by a preliminary IFR estimated based on seroprevalence without accounting for sensitivity decay. 
Independently for each seroprevalence observation, we determined how many past infections would have tested 
positive based on the number of days between exposure and the midpoint of the serology study dates, determined 
directly by the sensitivity curve matched to the data based on antibody test (more detail in section 9.3). We then 
determine a seroreversion factor and adjust the seroprevalence observation as detailed below: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡

𝑑𝑑=0

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡
𝑑𝑑=0

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − (1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Seroprevalence observations before (square) and after (circle) adjustment for vaccination and seroreversion are 
represented in the cumulative infected plot for each location with serological data in appendix 3. 
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Section 6: Modelling IDR, IHR, and IFR 
Section 6.1: Indirect age-standardisation 
We used estimates of the global age patterns of the IFR, and seroprevalence described by COVID-19 Forecasting 
Team.4 We directly adapted those methods directly to estimate the age pattern of IHR, using hospitalisations in the 
place of deaths, based on 703 surveys and 2812 age-specific observations. These estimates allow us to control for 
the effect of age structure in the IHR and IFR models. The formula for the age-standardising scaling factor for either 
ratio can be represented as: 

 𝑟𝑟𝑔𝑔 = ∑ 𝑟𝑟𝑎𝑎
𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎

𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎
𝑔𝑔

𝑠𝑠𝑠𝑠𝑎𝑎
𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎

𝑔𝑔
125
𝑎𝑎=0  

𝑟𝑟𝑙𝑙 = �
𝑟𝑟𝑎𝑎
𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎

𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑙𝑙

𝑠𝑠𝑠𝑠𝑎𝑎
𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑙𝑙

125

𝑎𝑎=0

 

𝑠𝑠𝑙𝑙 =
𝑟𝑟𝑔𝑔

𝑟𝑟𝑙𝑙
 

where the global all-age ratio, 𝑟𝑟𝑔𝑔, given global age-specific ratio, 𝑟𝑟𝑎𝑎
𝑔𝑔, and global age-specific seroprevalence, 𝑠𝑠𝑠𝑠𝑎𝑎

𝑔𝑔, is 
a function of the global population age structure, 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎

𝑔𝑔; and the location-specific all-age ratio, 𝑟𝑟𝑙𝑙, is based on local 
population age structure, 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑙𝑙 , given the same ratio and seroprevalence age pattern. The scaling factor, 𝑠𝑠𝑙𝑙, is the 
ratio of the global to location-specific all-age ratio s. The empirical estimates of IHR and IFR were multiplied by 
this value prior to modelling to implement the indirect age-standardisation, and the predictions from the models 
were then divided by this value to re-incorporate local age effects. 

Section 6.2: Bayesian cascading regression framework 
Models for IFR, IHR, and IDR were fit using MRTool, an open-source Bayesian meta-regression library developed 
at IHME.14,15 We implemented a “cascading” framework wherein after a global model is fit using all available data, 
subsequent models are fit using only data pertaining to subsets of a geographical hierarchy, with levels for super-
region, region, country, and subnational (where possible). We used an adapted version of the Global Burden of 
Diseases, Injuries, and Risk Factors Study (GBD) location hierarchy in this algorithm. In each of these models, the 
mean and standard deviation of the coefficients estimated in the “parent” location model were passed on to “child” 
location models as Gaussian priors. So, the first step would be to fit a model with all available data. Then, for 
example, a model for the high-income super-region is fit using data from all locations within that super-region and is 
also informed by the data from other super-regions through the priors that are derived from the global model 
coefficients. Similarly, a model for western Europe uses data directly from locations within that region and is also 
informed by the high-income model through the priors. Taking this a step further down the “cascade,” the model for 
the United Kingdom uses only data associated with the four nations and is also informed by the western European 
parent model through the priors. Lastly, a model for England would be run using only local data and would be 
informed by priors from the UK model. Locations without seroprevalence data use the parameters estimated from 
the model of the nearest parent location paired with local covariate values for prediction. 

For the pair of each level and covariate, we specified a hyperparameter, λ, which is a multiplier on the standard 
deviation of the prior. This enabled us to quantify a degree of confidence for each covariate at each level of the 
cascade. Certain parameters can more plausibly deviate from a parent model fit than others, which may be difficult 
to accurately capture in data-sparse sub-models. It also acts as an important safeguard against overinterpreting 
super-region or region-level variation that is used to predict out-of-sample, while allowing location-specific model 
fits more freedom. 

Section 6.3: Modelling IDR 
We estimated IDR using the formula: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝐼𝐼) = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1 log(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁

𝑖𝑖=2
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where the testing capacity rate is defined as the maximum observed testing rate at a given point in time. Using 
uniform prior functionality of MRTool, we constrain 𝛽𝛽1 to be positive. The IDR is a cumulative measure, while 
testing capacity is specific to a point in time—to reconcile this, we transformed the testing capacity variable to be 
the infection-weighted average of daily testing capacity rate up to the date of the survey data. The estimate of 
infections used for this transformation was deaths divided by our final estimate of IFR. To make predictions of daily 
IDR, this specification allowed us to simply apply the estimated parameters to the log daily testing capacity rate. 
Details on the estimation of testing rates by location over time are described elsewhere by the COVID-19 
Forecasting Team.8. The process for determining ensemble covariates is described in Section 9.6. Table S2 shows 
the λ values used for each hierarchy level and covariate in the IDR model. 

Table S2: IDR model lambdas 
Hierarchy level Intercept Testing 

capacity 
per capita 

Ensemble 
covariate 

Super-region 3 3 3 

Region 3 3 3 

Country 100 100 100 

Admin1 100 100 100 

Admin2 100 100 100 

 

Early on in the pandemic when testing rates were low, severely ill patients would have gone to hospital and many 
would have been diagnosed. This more targeted testing can result in an underestimate of the IDR (and thus 
overestimate of infections) during this period—to combat this, we set a location-specific minimum value of the IDR. 
For each location, we tested values of 0.01%, 0.1%, and each percent from 1% to 10%, and selected the floor that 
minimised root mean square error in resultant cumulative infections (ie, the cumulative sum of cases divided by the 
bounded IDR estimate) with respect to seroprevalence data. Locations without seroprevalence data inherited the 
floor of the nearest parent location with other child locations that had data. 

Section 6.4: Modelling IHR 
We estimated IHR using the formula: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼𝐼𝐼) =  𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁

𝑖𝑖=1

 

using the process for applying and backing out of age-standardisation described above. The process for determining 
ensemble covariates is described in Section 9.6. Table S3 shows the λ values used for each hierarchy level and 
covariate in the IHR model. 

Table S3: IHR model lambdas 
Hierarchy level Intercept Ensemble 

covariates 
Super-region 3 3 

Region 3 3 

Country 100 100 

Admin1 100 100 

Admin2 100 100 

 

Section 6.5: Modelling IFR 
We estimated IFR using the formula:  
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼𝐼𝐼) = 𝛽𝛽𝑜𝑜 + �𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖−1(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
2

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁

𝑖𝑖=2

 

where the spline on time is linear, with one knot. We constrained the slope in the period before the knot to be 
negative, and the slope in the period following the knot to be 0. Additionally, we included a Gaussian prior of N(–
0.002, 0.0012) on slope of the declining portion of the time period in the global stage of the cascade, based on 
analysis of patient-level hospital data in the USA,16 and is constrained to be no less than five times the mean of that 
slope for any location. The process for determining knot placement and ensemble covariates is described in Section 
9.6. 

Table S3 shows the λ values used for each hierarchy level and covariate in the IFR model. 

Table S3: IFR model lambdas 
Hierarchy level Intercept Time Ensemble 

covariates 
Super-region 3 2 3 

Region 3 2 3 

Country 100 10 100 

Admin1 100 10 100 

Admin2 100 10 100 

 

Section 6.6: Effect of vaccinations and variants on IHR and IFR 
Due to the marked age patterns of IHR and IFR, differential vaccination rates in older age groups have a significant 
effect on all-age ratios. Methods described by the COVID-19 Forecasting Team8 produced estimates of vaccination 
rates across locations over time, stratified by adults under 65 and 65+. We split IHR and IFR into those age groups 
by first calculating relative ratios under 65 and 65+ using their respective global age pattern models paired with 
location- and age-specific populations. To do this we divided the population-weighted average of the age-specific 
ratios under 65 by the population-weighted average of all ages, and then performed the same procedure using ages 
65 and above. We multiplied the location- and time-specific IHR and IFR estimated by the all-age models described 
previously by these age group relative ratios to get location-, time-, and age-group-specific ratios. Note that by using 
population-weighting, we assumed a uniform age pattern of infections in this stage – this was done to maintain 
consistency with assumptions around transmission intensity described by the COVID-19 Forecasting Team.8 

Next, we accounted for vaccination rates by age group across locations and over time. We used estimates of the 
proportion of the population effectively vaccinated, ie, with complete immunity, as well as the proportion who 
remain susceptible to infection but are protected from severe disease. Those effectively vaccinated and protected 
from escape variants (Beta, Gamma, Delta) were separately counted from ancestral and Alpha strains. Details on the 
estimation of these quantities, as well as the prevalence of variants, are described by the COVID-19 Forecasting 
Team.8 We used the formula: 

𝑟𝑟𝑎𝑎,𝑣𝑣 = 𝑟𝑟𝑎𝑎
1 − (𝑒𝑒𝑎𝑎,𝑣𝑣 + 𝑝𝑝𝑎𝑎,𝑣𝑣)

1 − 𝑒𝑒𝑎𝑎,𝑣𝑣
 

where the ratio for a given age group and variant grouping (ancestral and Alpha or Beta, Gamma, and Delta), 𝑟𝑟𝑎𝑎,𝑣𝑣, is 
equal to the original age group ratio, 𝑟𝑟𝑎𝑎, accounting for age- and variant-group-specific proportions of the population 
effectively vaccinated, 𝑒𝑒𝑎𝑎,𝑣𝑣, or protected, 𝑝𝑝𝑎𝑎,𝑣𝑣. We then recombined the age groups based on the populations and 
effective vaccination rates: 

𝑟𝑟𝑣𝑣 = 𝑟𝑟<65,𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝<65�1 − 𝑒𝑒<65,𝑣𝑣� + 𝑟𝑟65+,𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝65+(1 − 𝑒𝑒65+,𝑣𝑣) 
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where the all-age ratio for either variant group, 𝑟𝑟𝑣𝑣, is equal to the sum of the under 65 and 65+ ratios, 𝑟𝑟<65,𝑣𝑣 and 
𝑟𝑟65+,𝑣𝑣, respectively, weighed by the proportion of the age group populations that are not effectively vaccinated for 
the given variant group. The final IHR and IFR are defined as: 

𝑟𝑟 = 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝐴𝐴 × 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝐵𝐵,𝐺𝐺,𝐷𝐷 × 𝑠𝑠𝑠𝑠𝑠𝑠 

where proportion of infections with ancestral variant, 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and Alpha variant, 𝑝𝑝𝐴𝐴, would have an IHR or IFR 
determined by the preceding steps for non-escape variant group, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, while Beta, Gamma, and Delta variant 
infections, 𝑝𝑝𝐵𝐵,𝐺𝐺,𝐷𝐷, would have the escape variant IHR or IFR, 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . In order to account for increased likelihood of 
hospitalisation and death for non-ancestral variants (Alpha, Beta, Gamma, and Delta), we then scaled the IHR and 
IFR in the presence of non-ancestral variants by the severity risk ratio 𝑠𝑠𝑠𝑠𝑠𝑠. Details regarding the severity risk ratio 
can be found in section 9.5. 

Because IHR and IFR observations are cumulative, any data associated with a seroprevalence study done after the 
introduction of vaccines or the invasion of non-ancestral variants in a given location would be impacted by these 
variables. Our aim was to estimate curves devoid of these effects, and then to deterministically implement them by 
location-day using the methods described above. To do this, we must first remove the marginal effect of vaccines 
and variants from our model observations. For this we again used the results of the naïve IFR model, but then 
performed the operations described previously in this section to produce estimates that account for vaccines and 
variants. For each seroprevalence point at time 𝑇𝑇 in a given location, we apply the adjustment: 

𝑠𝑠𝑇𝑇 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑢𝑢

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑎𝑎
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑇𝑇

𝑡𝑡=0

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=0

 

𝑟𝑟𝑇𝑇𝑎𝑎 = 𝑟𝑟𝑇𝑇𝑜𝑜𝑠𝑠𝑇𝑇 

where ratio model observation (including relevant seroprevalence survey adjustments described in Section 5) at time 
𝑇𝑇, 𝑟𝑟𝑇𝑇𝑜𝑜, is revised scalar 𝑠𝑠𝑇𝑇, which is the infection-weighted average of the ratio of unadjusted naïve IFR, 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑢𝑢, to 
adjusted naïve IFR, 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑎𝑎. The adjusted ratio data, 𝑟𝑟𝑇𝑇𝑎𝑎, is then used in a subsequent final model. 

Section 7: Robust estimate of daily infections 
Three estimates of daily infections were generated by dividing reported cases by the daily estimate of the IDR, 
dividing hospitalisations (where available) by the daily estimate of the IHR, and dividing deaths by the daily 
estimate of the IFR. Where hospitalisations are not available, the robust estimate of daily infections would be based 
solely on cases/IDR and deaths/IFR. Before this transformation, we smooth the case, hospitalisation, and death time 
series using a cubic spline with knots every 7 days. We then check that each of these infections estimates results in 
plausible relationships with respect to the originally reported units; that is, we enforce that the ratio of cases to each 
source of infections is less than 0.8, that the ratio of hospitalisations to each source of infections is less than 0.65, 
and that the ratio of deaths to each source of infections is less than 0.65. The approach we used to combine the series 
into a single composite estimate of daily infections was designed to deal with the compositional bias problem caused 
by varying temporal coverage in reporting among cases, hospitalisations, and deaths, and due to different lags in the 
time between infection and those events. The unit of the analysis in the initial stage of synthesising these measures 
was the first difference in log daily values. We incorporated these data into a random knots spline regression using 
MRTool wherein we provided a number of knots and a number of unique knot combinations to an algorithm that ran 
a model with each combination and made a weighted composite estimate from the sub-models based on in-sample 
performance. We specified one knot per 28 days of data and tested ten random knot combinations of a quadratic 
spline. We then converted the estimate into log daily values by taking the cumulative sum and found the initial value 
of the composite time series by fitting a model to the average log daily residual of the three original curves with 
respect to the composite. 
 
We then conducted a fit-refit procedure that aimed to capture variability of the time trend suggested by noise in the 
reported data. We first converted the observed (unsmoothed) daily cases, hospitalisations, and deaths into 
unsmoothed infections by dividing them by the estimated time series of IDR, IHR, and IFR, respectively. We then 
used the log of these values to compute the residuals with respect to the log mean infections curve we estimated in 
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the previous step and calculated the robust standard deviation using a rolling 120-day window in order to be 
sensitive to changes in reporting practices. We then used the mean estimate of infections and the robust standard 
deviation to resample daily infections and refit the infections curve to these data using the same specifications used 
to estimate the original mean curve. 
 
For six countries—North Korea, Tajikistan, Turkmenistan, Nicaragua, Venezuela, and Tanzania—case, 
hospitalisation, and death data are either completely missing or deemed to be so unreliable that we exclude them 
from the analysis and instead report the average daily infection rate among other countries in their respective 
regions. 
Section 8: Cumulative infections and the cumulative proportion of the 
population infected at least once  
We used the adjustment scalar described in section 5.2 to determine the proportion of the population infected at least 
once at a given point in time in a given location by dividing the cumulative sum of estimated infections by that 
scalar. 

Section 9: Ensemble model framework 
Section 9.1: Overview 
To incorporate uncertainty in both data and assumptions that feed into our model, we developed an ensemble model 
framework wherein the methods described in previous sections were performed independently using 100 different 
variations of relevant data, model composition, and parameterisation. The general structure of that system is 
provided here. 

Section 9.2: Seroprevalence data 
For all but two seroprevalence observation, a lower and upper bound was reported in addition to the mean – from 
these we derive the standard error, and for each point sample 100 times from a logit-normal distribution with that 
mean and standard error. For the two studies that did not report uncertainty intervals, we used the mean and sample 
size to calculate the binomial standard error. To preserve correlation across multiple measurements within a given 
location while keeping inter-location samples independent, we sorted the samples across different observations 
within location to match the sort order of one arbitrarily chosen observation in that location. Next, we produced one 
bootstrapped sample of each of these 100 representations of our seroprevalence database. The resultant 100 datasets 
were each used as inputs to separate model pipelines. 

Section 9.3: Sensitivity decay functions 
Studies from which we extracted commercial assay sensitivity reported mean sensitivity by assay with uncertainty, 
either as continuous functions or at various points over time, indexed in time from either exposure or seroconversion 
– those that reported from exposure have been re-indexed to start at seroconversion. From these data we then 
produced 100 correlated samples of sensitivity and interpolated/extrapolated each of those 100 samples over time by 
fitting a smoothing spline over the logit transformed data with a number of evenly spaced knots that was equal to 
two fewer than the number of reported time points (minimum two knots). For those that reported sensitivity as 
continuous, ten knots were used. Where multiple studies reported sensitivity for a given assay, we separately fit 
these smooth curves by assay and study, then took the average of the curves. For studies that already applied a 
manufacturer correction for baseline sensitivity, we shift the curves up to equal 100% sensitivity at seroconversion. 
Figure S1 shows these curves we were able to extract from these studies, shown here extrapolated out to two years. 
The lighter blue lines are the 100 samples, while the dark line is the mean. 
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Figure S1: Sensitivity decay functions for eight commercial serology assays 

 

Section 9.4: Total COVID-19 scalars 
While timely reporting of deaths due to COVID-19 is available in most countries, under-reporting is prevalent even 
for countries with functional and complete vital registration system, particularly severe during the initial stage of the 
epidemic when testing is low. In our analysis, we define total COVID-19 deaths as all deaths where the deceased 
were actively infected by SARS-CoV-2 at the time of the death. To accurately capture the progression of the 
epidemic, we have applied a scalar of reported to total COVID-19 death counts for all locations included in our 
analysis. The total COVID-19 scalar is generated based on a separate model developed to estimate excess mortality 
due to COVID-19 by following the three steps described below.  

1. COVID-19 Excess Mortality Collaborators have developed an ensemble modelling framework to estimate 
the excess mortality for national and subnational locations where all-cause mortality data are reported by 
week or month during the COVID-19 epidemic. In all, they find such data for 74 countries and an 
additional 266 subnational locations from a subset of the 74 countries. To capture both the seasonality and 
secular trend in mortality over time, six different models were included in the ensemble model they used. 
Details of these models are described here:  
http://www.healthdata.org/sites/default/files/files/Projects/COVID/2021/Estimation-of-excess-mortality-
due-to-COVID.pdf 
The ensemble model provides excess mortality estimates for each location with reported all-cause mortality 
data after accounting for late registration, which varies by location as suggested by the analysis done by the 
COVID-19 Excess Mortality Collaborators. In addition to the excess mortality directly estimated using 
reported all-cause mortality data, they have also included excess mortality rate estimates provided by the 
Medical Research Council of South Africa at both the national and provincial levels. While detailed 
temporal data on all-cause mortality data from India are not available, they were able to use reported deaths 
from the Civil Registration System for nine states for selected months in both 2020 and 2021 to estimate 
excess mortality for those periods by comparing to the average numbers of deaths from the same states for 
year 2018 and 2019, after accounting for under-registration of deaths by state.  
  

2. Using the empirical excess mortality estimates described in the above step, they developed a new statistical 
model to predict excess mortality rate for all locations, national and subnational, included in our analysis 
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for the period of January 1, 2020, to November 14, 2021. Based on the meta-analysis conducted by the US 
Centers for Disease Control and Prevention, they evaluated all relevant and available covariates both 
pertaining to the COVID-19 epidemic and general population health metrics. To build a parsimonious 
model that includes covariates with sensible direction of effects on excess mortality rate, they have run 
Least Absolute Shrinkage and Selection Operator (LASSO) regression to identify the following covariates 
included in their final model: 

a. Cumulative seroprevalence with lag 
b. Mobility with lag 
c. Infection–detection ratio with lag 
d. Reported COVID-19 crude death rate 
e. Crude death rate for year 2019 
f. Universal Healthcare Coverage 
g. Prevalence of smoking for year 2019 
h. Crude death rate due to HIV/AIDS for year 2019 
i. Inpatient admission rate for year 2019 
j. Quality of death registration system 
k. Average latitude 
l. Proportion of population over age 75 in 2019 
m. Healthcare Access and Quality Index for year 2019 
n. Diabetes death rate in 2019 
o. Cardiovascular disease death rate in 2019 

After the model selection using mean level input data, they have run the estimation process 100 times based 
on draw-level excess mortality and covariates to account for uncertainty in all variables used in their 
analysis. Residuals from the in-sample fitting step are used in predicting excess mortality rate by location 
such that prediction matches the input excess mortality rates when they are available for the locations. For 
the purpose of making predictions for locations where we do not have empirical estimates of excess 
mortality, average residuals were generated for each GBD region and super-region. Given the sparse data, 
both in terms of time period and regions covered, from India, a country-level residual was used in 
prediction by averaging the state-level residuals from the nine states where we have data on excess 
mortality.  

Using the estimated draw-level fixed effects and the residuals together with draw-level covariates, we 
predict 100 draws of excess mortality rate for all locations included in our analysis for the period of 
January 1, 2020, to December 31st, 2021.  

3. The statistical model for the estimation of excess mortality rate described above enables us to approximate 
the fraction of excess mortality that can be directly attributable to COVID-19. Using this model, we can 
compute counterfactual excess mortality estimates where mobility is set to pre-pandemic level, and the IDR 
is set to the maximum observed level among all locations. By doing so, we correct excess mortality 
estimates for changes due to under-reporting from lack of testing and behavioural changes in care-seeking 
and social distancing. The ratio between these counterfactual excess mortality estimates and our estimates 
of excess mortality described in step 2 approximates the proportion of excess mortality for each location 
that can be attributed to total COVID during our estimation time period. However, in location and draw 
combinations where the ratio of reported COVID-19 deaths over estimated excess mortality is higher than 
the ratio based on our counterfactual analysis, reported COVID-19 deaths is used as the estimate of total 
COVID-19 deaths. Then, finally, for each location, the total COVID-19 estimates are used to generate the 
scalar for reported COVID-19 deaths. 
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Figure S2: Cumulative total COVID-19 death rate (per 100,000 population) by November 14, 2021 

 

 

Section 9.5: Ratio model parameters 
There are several parameters featured in our model pipeline that we vary by sub-model. First, we generate 100 
samples of cross-variant immunity from the distribution 𝑈𝑈[0.3, 0.7] – bounds set based on an empirical analysis 
using the SEIR model described by the COVID-19 Forecasting Team.8 Second, we generate 100 samples of severity 
risk ratio for all non-ancestral variants relative to ancestral based on Challen et al.,17 who reported an increased risk 
of mortality of 1.64 (95% CI: 1.32–2.04) among 54,906 matched pairs of patients infected with ancestral or Alpha; 
we applied this multiplier to both IHR and IFR. Third, we varied the duration from exposure to case detection and 
hospitalisation (𝑈𝑈[10, 13])), exposure to seroconversion (𝑈𝑈[14, 17]), and hospitalisation to death (𝑈𝑈[12, 15])) for 
each sub-model. 

Section 9.6: IDR, IHR, and IFR model 
The 100 sets of seroprevalence data, sensitivity decay curves, total COVID-19 deaths, and model parameters were 
then combined and used in 100 independent model pipelines using methods described in Sections 5 through 8. For 
the ratio models described in Section 6, we further diversify our model pool by varying the covariates used in the 
IDR, IHR, and IFR. 

We identified three suitable covariates with which to estimate the IDR (in addition to testing capacity rate, as 
described in Section 6.3): universal health care coverage (UHC), Healthcare Access and Quality (HAQ) Index, and 
proportion of the population age 65 years and older. Each of these was estimated as part of the GBD – details 
regarding their estimation have been published elsewhere. Briefly, UHC is a (0, 1) bound index of universal health 
coverage tracer interventions for prevention and treatment services; HAQ is (0, 1) bound index measuring health 
service delivery using causes of death amenable to personal health care. Each sub-model in the ensemble is 
randomly assigned either one of these three covariates or no additional covariates. Testing capacity rate was used in 
every sub-model. 

For estimating IHR and IFR, our potential covariates include conditions identified by the CDC as having an 
increased risk of severe illness that are supported by meta-analysis or systematic review 
(https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html). We cross-
referenced this list with a study that evaluated the risk of in-hospital death to select potential covariates,16 and use 
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the odds ratios reported in that study to more broadly represent increased risk of worse outcomes by including them 
as Gaussian priors in our IFR and IHR models – these covariates and priors can be found in table S4. In addition, we 
also include HAQ Index and UHC in the covariate pool for these models (without priors, but with constraints 
forcing coefficients to be negative). As with HAQ Index and UHC, these values are all estimates of the GBD. 

Table S4: Covid co-morbidity covariates and priors 
Underlying medical condition 
(age-standardised prevalence in the population) 

Prior Number of sub-
models 

Obesity 
𝑁𝑁(0.36, 0.0122) 100 

Smoking 
𝑁𝑁(0.1, 0.0083) 72 

Diabetes 
𝑁𝑁(0.1, 0.0024) 52 

Cancer 
𝑁𝑁(0.22, 0.004) 40 

Chronic obstructive pulmonary disease 
𝑁𝑁(0.07, 0.0032) 50 

Cardiovascular disease 
𝑁𝑁(0.19, 0.0049) 40 

Chronic kidney disease 
𝑁𝑁(0, 0.0048) 50 

 

We tested 383 possible combinations of these covariates (restricting UHC and HAQ Index from being present in the 
same model) in the global tier of our age-standardised IFR model (see Sections 6.1, 6.2, and 6.5 for more details) 
and selected the 100 combinations that were most predictive to use in our ensemble. We excluded data from the US 
and UK from this step in order to prevent the serial measurements across many subnational units in those countries 
from being overly influential in the selection of covariates. The number of sub-models that a given covariate is 
featured in can be found in table S2. UHC was included in 36 models, and HAQ Index was in 56. 

Patient data from hospitals in the United States, Brazil, and Mexico suggest improvements in diagnosing and 
treating COVID-19 resulted in lower mortality risk relative to the earliest months of the pandemic. However, these 
variables are exogenous to our model, and cumulative population death and seroprevalence data can be insufficient 
to precisely identify the duration of that period of decline – especially when the data are not serially measured, 
something that occurs in only very few countries. To estimate a marginal time effect in the IFR in a manner that 
reflects uncertainty in the shape of said effect, we randomly assigned the placement of the spline knot described in 
Section 6.5 for each sub-model. The selection pool consisted of 10 possible inflection points – the first day of each 
month from June 2020 to March 2021. 

Section 9.7: Estimating daily infections 
When triangulating infections based on cases, hospitalisations, and deaths as described in Section 7, we observed 
that, for example, infections derived from cases and the IDR might suggest significantly different levels of past 
infection than deaths divided by the IFR – specifically in locations without any seroprevalence observations and 
where predictive covariates lacked concordance across the different ratio models after being applied to local data. 
By simply “splitting the difference” in these instances, we greatly under-estimate the variation among our 
component parts, even in this ensemble approach. To combat this, we have used an algorithm that randomly selects 
one of the input measures (cases, hospitalisations, and deaths) to preferentially weight in each sub-model when 
triangulating infections using MRTool by assigning a lower variance to the infections derived from those data. We 
also vary the degree of that weighting for each sample by drawing a variance from the distribution 𝑈𝑈[0.1, 0.9], while 
data from the measures not selected in that sub-model retain a variance equal to 1. This yields a distribution of 
posterior infections estimates that more adequately reflects the heterogeneity of the observed data, assumptions, and 
model estimates by which it is informed. 

Section 10: Sensitivity analyses 
To explicitly demonstrate the effects of some of our model assumptions, we have run our analytic pipeline five 
additional times, removing the effect of one model assumption from each run. We included comparisons of our 
estimates of cumulative infection rate to these in figure S2, which graphs locations by super-regions showing the 
reference estimates on the x-axis and the results of the sensitivity analyses conducted for each column on the y-axis. 
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Figure S3: Sensitivity analyses 
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